Photoreversible surfaces to regulate cell adhesion.

نویسندگان

  • Alexis Goulet-Hanssens
  • Karen Lai Wing Sun
  • Timothy E Kennedy
  • Christopher J Barrett
چکیده

We report the development of a photoreversible cell culture substrate. We demonstrate the capacity to modify the adhesivity of the substrate using light, altering its capacity to support cell growth. Polyelectrolyte multilayers (PEMs) were used to produce tunable substrates of different thickness and matrix stiffness, which have different intrinsic capacities to support cell adhesion and survival. Surfaces were top-coated with a poly(acrylic acid)-poly(allylamine hydrochloride) polyelectrolyte bilayer functionalized with a small fraction (<1%) of an azobenzene-based photoswitchable sidegroup, which included the cell-adhesive three-amino-acid peptide RGD. Irradiation with light-induced geometric switching of the azo bond, resulting in changes to RGD exposure and consequently to cell adhesion and survival, was investigated on a variety of surfaces of different thickness and stiffness. Substrate stiffness, as modified by the thickness, had a significant influence on the adhesion of NIH 3T3 cells, consistent with previous studies. However, by disrupting the isomerization state of the azobenzene-linked RGD and exposing it to the surface, cell adhesion and survival could be enhanced up to 40% when the positioning of the RGD peptide was manipulated on the softest substrates. These findings identify permissive, yet less-than-optimal, cell culture substrate conditions that can be substantially enhanced using noninvasive modification of the substrate triggered by light. Indeed, where cell adhesion was tuned to be suboptimal under baseline conditions, the light-induced triggers displayed the most enhanced effect, and identification of this 'Goldilocks zone' was key to enabling light triggering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of novel anodized titanium for enhanced recruitment of H9C2 cardiac myoblast

Objective(s):Anodized treated titanium surfaces, have been proposed as potential surfaces with better cell attachment capacities. We have investigated the adhesion and proliferation properties of H9C2 cardiac myoblasts on anodized treated titanium surface.  Materials and Methods: Surface topography and anodized tubules were examined by high-resolution scanning electron microscopy (SEM). Contro...

متن کامل

The Study of Collagen Immobilization on a Novel Nanocomposite to Enhance Cell Adhesion and Growth

Background: Surface properties of a biomaterial could be critical in determining biomaterial’s biocompatibility due to the fact that the first interactions between the biological environment and artificial materials are most likely occurred at material’s surface. In this study, the surface properties of a new nanocomposite (NC) polymeric material were modified by combining plasma treatment and...

متن کامل

The Relationship between Cell Surface Hydrophobicity and Antibiotic Resistance of Streptococcal Strains Isolated from Dental Plaque and Caries

Objective Bacterial adhesion is governed by specific and nonspecific interactions such as hydrophobicity. Hydrophobic interactions play a role in the adherence of microorganisms to a wide variety of surfaces and facilitate biofilm formation due to bacterial adhesion. In this article the relation between cell surface hydrophobicity and antibiotic resistance was studied. Materials and Methods ...

متن کامل

Cell Adhesion On Surfaces Of Varying Topographies

Micro-topography of a surface in?uences cell adhesion and proliferation. To improve adhesion, polyelectrolyte multilay ers (PEMs) are built on patterned support layers to increase surface Wettability, thereby improving attachment and spreading of the cells. Physical parameters, such as pattern siZe and pitch, in part, regulate cell adhesion and prolifera tion. Varying the surface topography pro...

متن کامل

اصلاح سطح ابرآبگریز پلیمر پلی‌پروپیلن با هدف بهبود برهم‌کنش‌های بیولوژیک

The significance of producing superhydrophobic surfaces through modification of surface chemistry and structure is in preventing or delaying biofilm formation. This is done to improve biocompatibility and chemical and biological properties of the surface by creating micro-nano multilevel rough structure; and to decrease surface free energy by Fault Tolerant Control Strategy (FTCS) . Here, we pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomacromolecules

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 2012